Anonymization of Stuttered Speech - Removing Speaker Information while Preserving the Utterance

Jan Hintz^{1*}, Sebastian Bayerl^{2*}, Y. Sinha¹, S. Ghosh³, M. Schubert¹, S. Stober³, Korbinian Riedhammer², Ingo Siegert¹ ¹Mobile Dialog Systems, Otto-von-Guericke-University Magdeburg, ²Technische Hochschule Nuremberg, ³Artificial Intelligence Lab AI-LAB, Otto-von-Guericke-University Magdeburg

Motivation

Anonymization:

- Identity concealment in different contexts.
- Data collection
- Re-identification through speech pathologies

E-Health:

- Remote treatment scenario for speech pathologies
- Acessbility

Evaluation

Speaker Recognition:

- Pretrained ECAPA-TDNN from Nemo Toolkit
- Feature vectors are compared using euclidean distance
- Evaluate level of anonymity by Equal Error Rate (EER)

Stuttering Classification:

Details see:

Need for evaluation and more inclusive models!

- KSF-C Challenge Task (8 class classification task)
- Fine-tuned wave2vec 2.0-based classification system
- Finetuning and evaluating on original and anonymized data

*Fine-tuned on anonymized data

Results

Dataset

- German Kassel State of Fluency (KsoF) dataset with 37 speakers
- KSF-C classification task (ComParE challenge 2022)
- 5597 three-second .wav clips
- Vertabim transcripts used for Re-synthesis

Dataset

Anonymization

Re-synthesis:

Equal Error Rate (EER) and Unweighted Average Recall (UAR) EER (%) UAR (%) UAR* (%) KSOF 8.24 62.78 original Strar-GAN [6] 27.25 35.50 52.66 baseline Strar-GAN [6] 32.63 35.39 46.38 Delta **Re-Synthesis** 48.27 14.15 22.25

Dysfluency prediction on KSF-C

- Speech Recognition with Whisper medium model
- Synthesis with FastPitch and HiFi-GAN from Nemo Toolkit
- Fine-tuning on HUI-Database (model aviable)

Voice Conversion:

- StarGAN v2 as baseline
- Additional losses to capture specifics of stuttering
- Changes in pitch and pitch modulation
- Changes in intensity

Dysfluency prediction finetuned and tested on Data anonymized with StarGAN F0 Delta

Block -	0.60	0.03	0.01	0.11	0.07	0.05	0.00	0.13
Fillers -	0.10	0.55	0.00	0.18	0.04	0.01	0.00	0.12
Garbage -	0.44	0.00	0.12	0.00	0.00	0.00	0.00	0.44
Mod	0.00	0.00	0.00	0.94	0.01	0.01	0.00	0.03
Prolong	0.19	0.02	0.01	0.15	0.43	0.12	0.00	0.08
Sound _ Rep.	0.22	0.04	0.00	0.06	0.12	0.51	0.00	0.05
Word _ Rep.	0.22	0.06	0.00	0.22	0.11	0.17	0.00	0.22
No_ Disfl.	0.05	0.00	0.02	0.27	0.06	0.05	0.00	0.56
	Block	Fillers	Carbage	Mod.	prolong.	Sound Rep.	Word Rep.	No Disfl.

Conclusions

Re-synthesis:

- Grants high anonymity
- Difficult to convey inormation about the speech disorder
- Most modifications and prolongations are masked
 Phoneme based recognition and synthesis could lead to

improvement

Voice Conversion:

- Best trade-off between anonymization and preserving stuttering for Speech therapy purposes.
 Has to be confirmed for other speech pathologies.
- Possibility of anonymized data collection

Read the Paper!

ANONYM PREVENT

Get in touch!

Technische Hochschule Nürnberg